
Streaming component combinators

We present a small framework for building and reusing components for processing of markup streams. The core of
the framework is built around two concepts that, as far as we know, have not been used in this area so far: the
concept of splitter components that follow a common interface and contract, and the concept of generic component
combinators that can be used to combine arbitrary splitter and filter components into higher-level components.

Mario Blaževíc, Senior Software Developer, Stilo International

Introduction
Streaming, in the context of this paper, means processing data as it is being delivered. There are
two reasons why streaming is important for markup processing. One is that streaming
applications do not need to load their whole input into main memory at once, and hence achieve
better performance and scalability compared to DOM and other technologies dependent on
data-structure representations of the input. The other reason is that many applications are
naturally expressed in producer-consumer or producer-filter-consumer patterns. The ability to
express streaming makes these types of applications much easier to build. See [Morrison 1994]
for a more detailed justification of the streaming paradigm.

Today’s mainstream programming languages are unfortunately not particularly well-suited to the
streaming model [Wilmott 2003]. While it may be easy to implement a simple stream processor,
its reuse in the context of a larger streaming application isquite difficult in comparison to the
simple reuse of the native programming language concepts like functions or classes.

Another way to support streaming is at the operating system level. Small, reusable streaming
applications have traditionally been encouraged in the Unix environment [Raymond 2003]. CMS
Pipelines [Hartmann 1992] provide support for more sophisticated streaming applications. At this
level, however, the stream processors are treated as black boxes that cannot be type-checked, nor
fused and optimized in other ways. The inter-process communication is also much more
expensive than language-supported mechanisms would be.

To summarize, neither the programming languages nor the operating systems provide a
satisfactory glue logic for combining streaming components together. For these and other
reasons, several attempts have been made to provide the missing support for streaming
applications in the shape of aframework. To date, however, their impact has been limited. One
reason for this state of affairs may be that existing frameworks are not modular enough. They
provide various reusable components as well as glue logic needed to combine them into a
pipeline. However, the generic components that the existing frameworks emphasize are filters.
Two components in a filter class can be trivially combined together into a single filter component.
There is no simple way to combine more complex components together. Some frameworks allow
the user to combine components by connecting their ports together, but this style of component
network specification is much more difficult to master than the simple pipelining of two filters.

This paper is a proposal to introduce a new class of generic components that offers more potential
for gluing than filters do, but at the same time remains easy toreason about. All components used
in this paper, both basic and higher-level component combinators, have been implemented in

Extreme Markup Languages 2006 1

Mario Blažević • Streaming component combinators

OmniMark [OmniMark 2006], version 8. Some of the component implementations have been
omitted to conserve space. The same design could be replicated in other general-purpose
programming languages. One likely constraint is that the implementation language should
support coroutines in some form [Wilmott 2003].

Related work
The importance of streaming transformations of markup has long been recognized. There has
been ongoing work on creating streaming implementations ofstandardized markup-processing
and querying languages, XPath [Peng 2005][Olteanu 2004], XSLT and XQuery [Florescu 2004]
[Fegaras 2002] among them. However, the design of these languages is such that no
implementation can guarantee streaming behaviour. Other efforts have been focused on defining
streaming subsets of the aforementioned languages, as wellas specially-designed languages that
fully support streaming processing, like OmniMark [OmniMark 2006], Sequential XPath [Desai
2001] and Streaming Transformations for XML [Becker 2003].

Streaming component frameworks seem to have been reinvented several times. Most of these
frameworks, however, are designed to work on coarse-grained filter components. Some examples
are XPipe [XPipe 2002], XML Pipeline [XML Pipeline 2002], Cocoon [Apache 2006], and iFlow
[Lui 2000]. Possible exceptions are STnG [Krupnikov 2003],as well as THREADS [Morrison
1994] which can apply components to arbitrary parts of the framework input. However, none of
the listed frameworks seem to try to formally classify the components into abstract classes, nor
define any generic component combinators that would operateon instances of component classes.

On the other hand, plenty of work has been done on combinator frameworks in general,
especially in the functional programming language community. Theparsercomponent
combinators [Hutton 1996] are closely related to this work.A nice implementation of a parser
combinator library is Parsec [Leijen 2001]. The main difference between a parser combinator
framework and a streaming component combinator framework,such as the one presented here, is
that parser frameworks are streaming only on their input side. On the output side, they produce a
well-defined and structured result from the input source, typically a parse tree. This is possible
only because a parser deals with highly structured and constrained input. Once some input is
parsed and the result constructed, the input is no longer necessary. In contrast, a streaming
component combinator framework has to deal with input that is only weakly structured; in many
cases the only meaningful result of processing any single component is just a rearrangement of
the component’s input.

There are also combinator frameworks for XML document processing, HaXML [Wallace 1999]
for example. While many of the combinators defined by HaXML resemble ours, there are two
important differences: HaXML combinators operate exclusively on filters andad hocHaskell
function types, and HaXML operates on a parsed document treeand therefore is not streaming.
The latter constraint appears to be shared by all XML combinator frameworks implemented in
Haskell today. The XPath implementation in Scheme, SXPath [Lisovsky 2003], provides
combinators that operate on nodeset-transforming functions, which are also not designed for
streaming.

The most recent work [Shivers 2006] finally applies the combinator approach to streaming
components by using continuation passing to transfer control. The early results are promising, but
most attention is still devoted to simple linear pipelines of filter components.

Extreme Markup Languages 2006 2

Mario Blažević • Streaming component combinators

Streaming component types

Filters
A filter is a streaming component with one data source and one data sink. The concept of
streaming filter components has been recognized for some time, and is a part of programmers’
vocabulary in many areas. A filter component takes a data stream as its input, transforms it, and
produces another data stream as its output. The best-known example of filters is probably the
Unix piping model [Raymond 2003].

A filter component has a responsibility to consume its whole input. It is not allowed to simply
terminate in the middle of processing of its input. If one filter in a pipeline terminates, the whole
pipeline dies with it.

In OmniMark, a filter component can be represented as an abstract data type with a single
operationapply-filter, illustrated below in figure 1:

export record filter

export dynamic overloaded function
apply-filter value filter filter

from value string source filter-source
into value string sink filter-sink

as
not-reached message "The base function apply-filter must be overridden!"

Figure 1. "Abstract filter component"

A concrete filter implementation must extend the abstractfilter type and override itsapply-filter
method. Several concrete filter examples are given next.

Basic filters

• as-isis a simple filter that passes its input through unmodified.

; record declaration
declare record identity-filter extends filter

Extreme Markup Languages 2006 3

Mario Blažević • Streaming component combinators

; constructor definition
export filter function

as-is
as

return new identity-filter {}

; apply-filter method overriding
define overriding function

apply-filter value identity-filter filter
from value string source filter-source
into value string sink filter-sink

as
put filter-sink filter-source

• Thereplace-byfilter is parametrized by a string parameter at creation time. This filter
replaces its whole input by the parameter.

; record declaration
declare record constant-filter extends filter

field string replacement

; constructor definition
export filter function

replace-by value string replacement
as

local constant-filter result

set result:replacement to replacement
return result

; apply-filter method overriding
define overriding function

apply-filter value constant-filter filter
from value string source filter-source
into value string sink filter-sink

as
put filter-sink filter:replacement
put #suppress filter-source

• suppressfilter suppresses all input it receives. It is equivalent toreplace-by "".

• error filter reports an error if any input reaches it.

• prepend filter passes its input unmodified, except for prepending a given constant string
parameter before it.

• appendfilter passes its input unmodified, except for appending a given constant string
parameter to its end.

• include-file treats its whole input as a URL or a file path and outputs the content of the
file.

Extreme Markup Languages 2006 4

Mario Blažević • Streaming component combinators

Markup filters
The filters listed in the previous section are generic, in thesense that they can be applied to any
form of character input stream. But if we restrict our attention to inputs in a particular format, we
can provide many more interesting filters. The more specific the input is, the more sophisticated
the possible processing components can get. For example, wecan apply the following filters to
any input in XML format:

• xml-escapeescapes the XML markup so it can be embedded as an XML element
content. It replaces ">" characters by ">" etc. Its inverse isxml-unescapewhich
performs the opposite operation, by expanding all escaped XML character entities.

• xml-rename-elementrenames all top-level occurrences of any XML element in its input
to the given name.

• xml-rename-attribute renames all top-level elements’ attributes with the given name to
the other given attribute name.

• xml-add-attribute adds an attribute with a given name and value to all top-level
elements in its input.

• xml-remove-attribute removes all top-level element attributes in its input that match the
given attribute name.

The inputs and outputs of XML-specific components are not well-formed XML documents, but
rather streams of well-formed mixed content.

Buffering filters
There is a large class of filters that have to buffer their whole input before they can produce any
result. These are notstreamingcomponents in any sense, but since they expose their functionality
through a streaming interface they can still be used in a streaming component framework. The
trick is to restrict their usage to the parts of the stream which must be processed in this way.
Unfortunately, the burden of deciding which parts those areis on the user.

• xml-sort-by-attribute sorts the top-level elements in its input by the value of the
attribute with the given name.

• xml-sort-by-content sorts the top-level elements in its input by the value of their content.

• character-count counts all characters in its input and outputs the number in decimal
form.

Splitters
A splitter is a streaming component with one data source and two sinks. A pure splitter
component is not supposed to modify its input in any way; instead, it streams portions of its input
stream to either of its two outputs. Every bit from the input stream has to be present in one or the
other of the output streams. Secondly, the outputs have to beproperly interleaved. Another way
of stating the invariants is to say that if the two sinks of anypure splitter are connected together,
the component acts as an identity transform.

Extreme Markup Languages 2006 5

Mario Blažević • Streaming component combinators

The concept of splitters, together with the operations thatcan be applied to them, is the only new
technical contribution this paper has to offer. The streaming component frameworks have been
researched and built before, but the emphasis has mostly been on filters. That is not to say that no
framework contained splitter components before. The previous work on streaming pipeline
frameworks has mostly seen splitters as large,ad hoccomponents that must be provided by the
user.

In OmniMark, a splitter component can be represented as an abstract data type with a single
operationsplit that takes one data source and two sinks as arguments:

export record splitter

export dynamic string sink function
split (value splitter sp,

value string sink true,
value string sink false)

as
not-reached message "The base method split must be overridden!"

Figure 2. Abstract splitter component

The concrete splitter instances must extend the basesplitter type and override the methodsplit. In
the examples that follow, the OmniMark code will be elided for brevity.

Basic splitters

• all-true andall-falsesplitters simply pass their entire input to thetrueandfalsesink,
respectively.

• Thewhitespacesplitter passes all whitespace to itstruesink, and the rest of the input to
its falsesink.

• The lines splitter passes the contents of every line in its input to thetruesink, and all
line-end characters to thefalsesink.

Extreme Markup Languages 2006 6

Mario Blažević • Streaming component combinators

• Thesubstring splitter is parametrized by a constant string value. Whenever it encounters
the given string in its input, it passes it to thetruesink. All the rest of the input goes to the
falsesink.

; record declaration
declare record substring-splitter extends splitter

field string substring

; constructor definition
export splitter function

substring value string substring
as

local substring-splitter result

set result:substring to substring
return result

; split method overriding
define overriding string sink function

split (value substring-splitter self,
value string sink true,
value string sink false)

as
repeat scan #current-input
match ~self:substring

put true self:substring
match any => one

put false one
again

• prefix andsuffix are similar to thesubstringsplitter, except they look for the given string
only at the beginning and at the end of their input, respectively.

Markup splitters
The observation on the generic and purpose-specific filters also holds true for splitters: as we
restrict the inputs to be more specific, the splitters we can apply to them become more
sophisticated.

• xml-elementscans the input for well-formed XML elements. Elements are passed to the
truesink together with their content, and all the intervening data goes to thefalsesink. If
there is no intervening data between two consecutive elements, this splitter sends an
empty XML comment to thefalsesink as intervening data. Therefore, this is not a pure
splitter: it generates some data that was not present in its input. This behaviour makes the
splitter usable for chunking consecutive elements, as willbe seen later. When used with
the other element-processing components, as is usually thecase, the extra empty
comments are irrelevant.

• xml-element-contentbehaves similarly to thexml-elementsplitter, except it strips the
start and end tags off the top-level elements, and sends onlytheir content to thetruesink.
The top-level element tags, together with any intervening data content, go to thefalsesink.

Extreme Markup Languages 2006 7

Mario Blažević • Streaming component combinators

• xml-element-namedis parametrized by an element name, and optionally with a
namespace. It behaves like thexml-elementsplitter, but it sends to itstruesink only those
top-level elements whose name matches the given argument name.

• xml-attribute-named is parametrized by an attribute name, and optionally with a
namespace. If it finds an element attribute matching the given name among the top-level
elements in its input, it sends it to thetruesink. Everything else goes to thefalsesink.

• xml-attribute-value expects a list of attributes as its input. It sends attributevalues, with
the quote delimiters stripped, to itstruesink, and the rest of the input to itsfalsesink.

Streaming component combinators
A library of streaming components like those listed in the previous section can help perform
various basic tasks, but we call themcomponentsbecause the goal is to use them together as
building blocks for assembling more sophisticated stream-processing tools.

One way to combine streaming components is to wire their ports together; for examples see
[Morrison 1994] and [XML Pipeline 2002]. This method directly corresponds to the way
pipelines are usually represented graphically, by drawinglines between components’ ports. While
a specification written in this style can express any possible configuration of components, the
technique does not scale well: the number of possible connections grows as the square of the
number of all ports of all components present in the network.

The other common approach is to use combinators. Component combinators operate on whole
components instead of their ports, much in the same way that combinatory logic [Curry 1958]
operates on whole functions instead of their arguments and results. An example of this
specification method in streaming frameworks is [Krupnikov2003], but the best known
streaming combinator is the Unix pipe operator.

While the wiring approach is applicable to any number of components of any kind, a combinator
can be applied only to specific kinds of components. This constraint leads to two design
imperatives:

• All basic components should be classified by what combinators can be applied to them,
and the number of different component classes should be keptto a minimum. The more
different component classes there are, the more different combinators are needed to
operate on them.

• The result of a combinator application is another component. This combined component
should always fall into one of the component classes of the framework. That way we can
keep applying the same combinators to the intermediate results, producing more and more
complex components.

The framework presented here classifies all components intotwo classes: filters and splitters.
Every basic component is either a splitter or a filter, the only arguments of every combinator are
splitters and filters, and the result of each combinator application is either a filter or a splitter
component.

Extreme Markup Languages 2006 8

Mario Blažević • Streaming component combinators

Filter combinators

• >> The most obvious and well-known combinator of streaming components is the pipe
operator. It takes two filters and combines them together into a single filter component.
The resulting component acts as a composition of the two argument filters: it passes the
input to one filter, the output of that filter is passed to the other filter, and its output
becomes the output of the combined component.

• join combinator also combines two filters into a single filter. However, this combinator
arranges the two filters in parallel. The input of the resulting filter is replicated to both
component filters in parallel, and the output of the resulting filter is a concatenation of the
two component filters’ outputs.

To do its job, the join combinator uses two non-standard components. Theteecomponent,
known from the Unix environment, replicates its input into two parallel streams. This
component is neither a filter nor a splitter, so no generic component combinator can use it.
Another non-standard Unix-style component iscat taking two (or more) inputs and
concatenating them in order. Again, this component cannot be used by generic component
combinators. However, in place of these two components we can provide thejoin
combinator that combines two filters into another filter component. The combined
component internally usesteeto replicate its input to both of the filters it contains and
thencat to concatenate the filters’ outputs. The result behaves as anordinary filter and can
be used by other combinators. Notice, however, that the result filter of join is not
completely streaming, as it has to buffer the output of the second component filter until
the end of the input.

Pseudo-logical splitter combinators
A pure splitter component can be thought of as a representation of a logic predicate. The portion
of the input that the splitter sends to one of its two sinks is taken to satisfy the predicate, and the
input that goes to its other sink does not. Having this picture in mind, the following splitter
combinators become obvious.

• The! (not) operator simply reverses the outputs of the argument splitter. In other words,
data that the argument splitter sends to itstruesink goes to thefalsesink, and vice versa.

• The>& operator sends thetruesink output of its left operand to the input of its right
operand for further splitting. Both operands’falsesinks are connected to thefalsesink of
the combined splitter, but any piece of input to get into thetruesink of the combined
component data must pass both splitters. Figure 3 illustrates this.

Extreme Markup Languages 2006 9

Mario Blažević • Streaming component combinators

; record declaration
declare record and-splitter extends splitter

field splitter left
field splitter right

; constructor definition
export overloaded splitter infix-function

value splitter left
>&

value splitter right
as

local and-splitter result

set result:left to left
set result:right to right
return result

; split method overriding
define overriding string sink function

split (value and-splitter s,
value string sink true,
value string sink false)

as
using output as split (s:left, split (s:right, true, false), false)

output #current-input

Figure 3. >& splitter combinator

• The>| splitter combinator is a mirror image of >& combinator, as illustrated by figure 4.
Its input can get to itsfalsesink only by going through both argument splitters’false
sinks.

Extreme Markup Languages 2006 10

Mario Blažević • Streaming component combinators

; ... skipping the record and constructor declaration
; split method overriding
define overriding string sink function

split (value or-splitter s,
value string sink true,
value string sink false)

as
using output as split (s:left, true, split (s:right, true, false))

output #current-input

Figure 4. >| splitter combinator

Note that the >& and >| operators are not exact equivalents ofthe corresponding Booleanand/or
operators. In particular, they are commutative only when their two argument splitters agree on
what forms a unit of input,i.e., when the input stream is a uniform sequence of records. Most
markup splitters do not satisfy this property. For example,the expressionxml-element-named "A"
>& xml-element-content >& xml-element-named "B"is an equivalent of the XPath expression
A/B, which is obviously not commutative.

Flow-control combinators
Since approximating a splitter as a logic predicate (i.e., a boolean expression) turned out to be
productive, we can try digging deeper into our intuition foruseful metaphors. For example, we
can see a filter component as an imperative statement. A filtermodifies the stream that flows
through it, much like an imperative statement that modifies the state surrounding it. The piping
operator>> would then be an equivalent of a statement sequencing operator. Having both
imperative statements and Boolean expressions, the natural thing to look for next would be an
equivalent of the flow-control statements.

Extreme Markup Languages 2006 11

Mario Blažević • Streaming component combinators

• The if combinator takes a splitter and two filters and combines theminto a single filter
component, as shown in figure 5. The resulting filter applies one argument filter to one
portion of the input and the other filter to the other portion of input, depending on where
the splitter routes the data.

; apply-filter method overriding
define overriding function

apply-filter value if-filter filter
from value string source filter-source
into value string sink filter-sink

as
using output as split (filter:splitter,

filter:left >> filter-sink,
filter:right >> filter-sink)

output filter-source

Figure 5. if combinator

The combinatorswhere andunlessare simpler versions of theif combinator, having one of the
two filters beas-is. Theselectcombinator uses theas-isandsuppressfilters as thetrueandfalse
sinks, respectively. In effect, theselectcombinator converts a splitter into a filter which retains
only thetrueportion of the input. The three combinators can be more formally defined as follows:

• splitter where filter −→ if splitter thenfilter else as-is

• splitter unlessfilter −→ if splitter then as-is elsefilter

• selectsplitter−→ suppress unlesssplitter

A combinator language is point-free by definition, so we cannot use component names or labels
to achieve looping and recursion. If we want our component networks to be able to form loops,
we need more flow-control combinators.

Extreme Markup Languages 2006 12

Mario Blažević • Streaming component combinators

• The recursive combinatorwhile, illustrated in figure 6, feeds thetruesink of the
argument splitter back to itself, filtered by the argument filter. Thefalsesink of the splitter
is passed on unmodified. The combinatoruntil is the mirror image ofwhile.

; apply-filter method overriding
define overriding function

apply-filter value while-filter self
from value string source filter-source
into value string sink filter-sink

as
do scan filter-source
match lookahead any

using output as split (self:splitter,
self:filter >> self >> filter-sink,
filter-sink)

output #current-input
done

Figure 6. while combinator

• The recursive combinatornestedcombines two splitters into a mutually recursive loop
acting as a single splitter. Thetruesink of one of the argument splitters andfalsesink of
the other become thetrueandfalsesinks of the loop. The other two sinks are bound to the
other splitter’s source. This particular combinator does not have a corresponding
flow-control equivalent in the world of programming languages. The reason for this is that
the use ofnestedonly makes sense on hierarchically structured streams. If we gave it
some input containing a flat sequence of records, and assuming both component splitters
are deterministic and stateless, a record would either not loop at all or it would loop
forever.

Extreme Markup Languages 2006 13

Mario Blažević • Streaming component combinators

; split method overriding
define overriding string sink function

split (value nested-splitter self,
value string sink true,
value string sink false)

as
do when #current-input matches (lookahead any)

using output as split (self:upper-splitter,
true,
split (self:lower-splitter,

split (self, true, false),
false))

repeat scan #current-input
match any => one

output one
again

done

Figure 7. nested combinator

Active combinators
Each of the combinators defined so far builds a streaming network out of its argument
components, and then lets the network do its job. The combinator itself plays no role after the
initial configuration. This property guarantees that the combinator is completely generic: the type
of input that can be processed by the network is constrained only by its components, not by the
combinators applied to them.

The combinators defined next are different; they are still generic enough to be used on any kind
of input, but they also actively process the input stream. They achieve these seemingly
contradictory goals by using their splitter argument to determine the structure of the input. Every

Extreme Markup Languages 2006 14

Mario Blažević • Streaming component combinators

contiguous portion of the input that gets passed to one or theother sink of the splitter is treated as
one section in the logical structure of the input stream. What is done with the section depends on
the combinator, but the sections, and therefore the logicalstructure of the stream, are determined
by the argument splitter alone.

• The combinatorfirst takes a splitter as an argument and returns another splitter. The
result behaves the same as the argument splitter up to and including the first portion of the
input which goes into the argument’struesink. All input following the firsttrueportion
goes into thefalsesink.

• The result of the combinatorlast is a splitter which directs all input to itsfalsesink, up to
the last portion of the input which goes to its argument’struesink. That portion of the
input is the only one that goes to the resulting component’struesink.

The splitter returned by the combinatorlast has to buffer the previous two portions of its
input, because it cannot know if atrueportion of the input is the last one until it sees the
end of the input or another portion succeeding the previous one.

• Theforeach combinator is similar to the combinatorif in that it combines a splitter and
two filters into another filter. However, in this case the filters are re-instantiated for each
consecutive portion of the input as the splitter chunks it up. Each contiguous portion of
the input that the splitter sends to one of its two sinks gets filtered through the appropriate
argument filter as that filter’s whole input. As soon as the contiguous portion is finished,
the filter gets terminated.

• Thehaving combinator combines two pure splitters into a pure splitter. Again, one
splitter is used to chunk the input into contiguous portions. Its falsesink is routed directly
to thefalsesink of the combined splitter. The second splitter is instantiated and run on
each portion of the input that goes to first splitter’struesink. If the second splitter sends
any output at all to itstruesink, the whole input portion is passed on to thetruesink of
the combined splitter, otherwise it goes to itsfalsesink.

• Thehaving-only combinator is analogous to thehavingcombinator, but it succeeds and
passes each chunk of the input to itstruesink only if the second splitter sends no part of it
to its falsesink.

Note that the combinatorshavingandhaving-onlymust buffer each complete chunk of input until
the second splitter tests it.

One reason buffering matters is that flow-control combinators require their argument components
to agree on which parts of the stream get buffered and at whichpoint they get flushed. If one of
the subcomponents buffers a part of its input and the other does not, the output of the combined
component may be improperly interleaved. The following filter expression is one such example:

if xml-element-content then as-is else select last all-true

Both branches of the expression produce identical output, so the whole expression may seem
equivalent toas-is, but because all the element tags get buffered bylast all-truethey will be
output after the element content. We can synchronize the twobranches by using theforeach
combinator instead ofif .

Extreme Markup Languages 2006 15

Mario Blažević • Streaming component combinators

Examples
Let us try to define some higher-level components as a test of the framework’s expressivity.

• Thematching combinator takes a splitterselectorand a string constantvalueand returns
a splitter that compares each portion of the input passed by the selector against the value:

selector matching value −→ selector having-only prefix value

or, in OmniMark syntax:

export splitter infix-function
value splitter selector

matching
value string value

as
return selector having-only prefix value

• Theattribute-is splitter, parametrized by two strings,nameandvalue, passes all
top-level elements that have an attribute with the same nameand value.

name attribute-is value
−→ xml-element having ((xml-attribute-named name >& xml-attribute-value)

matching value)

• Thexml-element-countfilter takes XML input and outputs the number of all top-level
elements.

xml-element-count
−→ (foreach xml-element then replace-by "." else suppress) >> character-count

• Thedescendant-element-namedsplitter component finds all nested elements with the
given name:

descendant-element-named name
−→ nested (xml-element-named name) in xml-element-content

• Thetext-content splitter extracts the text content of all top-level elements in its input:

text-content −→ xml-element-content >& !xml-element

• The next example illustrates the use of thejoin combinator. For anyfile-pathelement in
the input stream, whose content is a slash-delimited file path, the component adds a
corresponding base file name enclosed infile-nameelement tags.

foreach descendant-element-named "file-path"
then as-is join ((select xml-element-content)

>> (select last (!substring "/"))
>> (prepend "<file-name>")
>> (append "</file-name>"))

Extreme Markup Languages 2006 16

Mario Blažević • Streaming component combinators

• As the final example, consider the following XQuery expression:

<references>
{

for $r in //book[.//keyword[text() = "filter"]]
return <reference>{$r/title/text()}</reference>

}
</references>

Assuming there are no book elements nested within each other, this query can be
rewritten using the streaming combinators in the followingfashion:

(
foreach (descendant-element-named "book"

having (descendant-element-named "keyword"
>& text-content matching "filter"))

then (select (descendant-element-named "title") >& xml-element-content)
>> (prepend "<reference>") >> (append "</reference>")

else suppress
)
>> (prepend "<references>") >> (append "</references>")

Conclusion and future work
We have demonstrated that the concept of splitter and filter components, coupled with the power
of generic component combinators, is expressive enough to build new filters and new splitters
from a small base of predefined basic components and component combinators.

In the future, we hope to use the presented framework in real-world applications. More practice is
needed to grow the library of basic components and combinators.

We can see that all components communicate with each other through simple data streams, with
no out-of-bounds control signals whatsoever. While this feature of the framework simplifies
manipulation and reasoning about the component networks, it is a constraint in some cases. In
particular, one must take care when using buffering components: If they disagree on the structure
of the input stream the output of the network can be improperly interleaved. A solution that could
discover a problem of this kind by a static analysis of the component network would be greatly
preferable to synchronization signals.

Another area of research would be concerned with various transformations of the component
networks. One possibility is automatic conversion of XPathand XQuery expressions into a
streaming component representation. At the other end, a built-up component pipeline, or at least
parts of it, could be compiled into more efficient code in OmniMark or another host language.
And in between, the component network could be transformed either at the high level, using a
graph rewriting system, or at the lower level, by fusing multiple components into a single one.

Though the current implementation is in OmniMark, the only features the framework requires
from the implementation language are abstract data types and some form of coroutine support.
One interesting possibility would be to implement the same framework in Haskell, since the
existing implementations of parser combinator libraries in Haskell have proven quite successful.

Extreme Markup Languages 2006 17

Mario Blažević • Streaming component combinators

Acknowledgements
I want to thank Jacques Légaré for his comments, Helen St. Denis, Joe Gollner and Norbert
Winklareth for finding the time to read the paper, and the restof the team at Stilo for providing
the initial motivation for the work.

Bibliography
[Morrison 1994]John Paul Morrison,Flow Based Programming, Van Nostrand Reinhold, 1994.

[Wilmott 2003]Sam Wilmott,What programming language designers should do to help markup
processing, Extreme Markup Languages, 2003

[Raymond 2003]Eric Steven Raymond,The Art of Unix Programming,
http://www.faqs.org/docs/artu/index.html, 2003.

[Hartmann 1992]John P. Hartmann, IBM Denmark,CMS Pipelines Explained
http://vm.marist.edu/~pipeline/pipjarg.pdf, 1992, revised 1997.

[OmniMark 2006] OmniMark language documentation,
http://developers.omnimark.com/documentation/index.htm

[Peng 2005] Feng Peng, Sudarshan S. Chawathe,XSQ: A streaming XPath engine, ACM
Transactions on Database Systems (TODS),30:2, 2005.

[Olteanu 2004]Dan Olteanu, Tim Furche, François Bry,An efficient single-pass query evaluator
for XML data streams, Proceedings of the 2004 ACM symposium on Applied
Computing627 - 631, 2004.

[Florescu 2004]Daniela Florescu, Chris Hillery, Donald Kossmann, Paul Lucas, Fabio Riccardi,
Till Westmann, J. Carey, Arvind Sundararajan,The BEA streaming XQuery
processor, The VLDB Journal13:3, 2004.

[Fegaras 2002]Leonidas Fegaras, David Levine, Sujoe Bose, Vamsi Chaluvadi, XML query
processing: Query processing of streamed XML data, Proceedings of the eleventh
international conference on Information and knowledge management, 2002.

[Desai 2001] Arpan Desai,Introduction to Sequential XPath, XML 2001.

[Becker 2003]Oliver Becker,Extended SAX Filter Processing with STX,
http://stx.sourceforge.net/, Extreme Markup Languages,2003

[XPipe 2002] XPipe presentation at XML SIG NY,
http://xpipe.sourceforge.net/BinaryStuff/xpipeny.ppt, 2002.

[XML Pipeline 2002]XML Pipeline Definition Language Version 1.0,
http://www.w3.org/TR/2002/NOTE-xml-pipeline-20020228/

[Apache 2006]http://cocoon.apache.org/2.1/overview.html

[Lui 2000] Andrew Kwok-Fai Lui, Mark W. Grigg, Michael J. Owen, T. Andrew Au, iFlow
(poster session): a data streaming application framework based on a uniform
abstraction, Addendum to the 2000 proceedings of the conference on
Object-oriented programming, systems, languages, and applications (Addendum),
2000.

Extreme Markup Languages 2006 18

Mario Blažević • Streaming component combinators

[Krupnikov 2003] K. Ari Krupnikov, STnG - a Streaming Transformations and Glue framework,
Extreme Markup 2003.

[Hutton 1996]Graham Hutton, Erik Meijer,Monadic Parser Combinators, Technical report
NOTTCS-TR-96-4. Department of Computer Science, University of Nottingham,
1996.

[Leijen 2001] Daan Leijen,Parsec, a fast combinator parser,
http://www.cs.uu.nl/people/daan/parsec.html, University of Utrecht, Dept. of
Computer Science, 2001

[Wallace 1999]Malcolm Wallace, Colin Runciman,Haskell and XML: Generic Combinators or
Type-Based Translation?, International Conference on Functional Programming,
1999.

[Lisovsky 2003]Kirill Lisovsky, Dmitry Lizorkin, XML Path Language (XPath) and its functional
implementation SXPath, Russian Digital Libraries Journal, Year 2003, Issue 4

[Shivers 2006]Olin Shivers, Matthew Might,Continuations and Transducer Composition, PLDI
2006.

[Curry 1958] HB Curry, R Feys, W Craig,Combinatory logic, North-Holland, 1958.

Biography

Mario Blažević
Senior Software Developer
Stilo International
1900 City Park Drive
Suite 504
Ottawa Ontario K1J 1A3 Canada

The author has a master’s degree in computer science from University of Novi Sad, Yugoslavia.
Since moving to Canada in 2001, he’s been working for OmniMark Technologies, later acquired
by Stilo International plc., mostly in the area of markup processing and on development of the
OmniMark programming language.

Extreme Markup Languages 2006 19

