Streaming component combinators

We present a small framework for building and reusing congpsfor processing of markup streams. The core of
the framework is built around two concepts that, as far as m@k have not been used in this area so far: the
concept of splitter components that follow a common interfand contract, and the concept of generic component
combinators that can be used to combine arbitrary splitted &élter components into higher-level components.

Mario Blazevt, Senior Software Developer, Stilo International

Introduction

Streaming, in the context of this paper, means processitagadat is being delivered. There are
two reasons why streaming is important for markup procgs€me is that streaming
applications do not need to load their whole input into maemmory at once, and hence achieve
better performance and scalability compared to DOM andrdadwdnologies dependent on
data-structure representations of the input. The othaores that many applications are
naturally expressed in producer-consumer or producer-tibnsumer patterns. The ability to
express streaming makes these types of applications msar éabuild. See [Morrison 1994]
for a more detailed justification of the streaming paradigm.

Today’s mainstream programming languages are unfortlynade particularly well-suited to the
streaming model [Wilmott 2003]. While it may be easy to impént a simple stream processor,
its reuse in the context of a larger streaming applicatiaquite difficult in comparison to the
simple reuse of the native programming language conceqgt$unctions or classes.

Another way to support streaming is at the operating sysésel.| Small, reusable streaming
applications have traditionally been encouraged in thex@nvironment [Raymond 2003]. CMS
Pipelines [Hartmann 1992] provide support for more soptagtd streaming applications. At this
level, however, the stream processors are treated as lbaels bhat cannot be type-checked, nor
fused and optimized in other ways. The inter-process conmatian is also much more
expensive than language-supported mechanisms would be.

To summarize, neither the programming languages nor thexbpg systems provide a
satisfactory glue logic for combining streaming composeagether. For these and other
reasons, several attempts have been made to provide thegrsspport for streaming
applications in the shape offeamework To date, however, their impact has been limited. One
reason for this state of affairs may be that existing frantéaare not modular enough. They
provide various reusable components as well as glue logidetto combine them into a
pipeline. However, the generic components that the exjstaameworks emphasize are filters.
Two components in a filter class can be trivially combinecetbgr into a single filter component.
There is no simple way to combine more complex componenttheg Some frameworks allow
the user to combine components by connecting their poretheg but this style of component
network specification is much more difficult to master thamghmple pipelining of two filters.

This paper is a proposal to introduce a new class of genempoaents that offers more potential
for gluing than filters do, but at the same time remains easgason about. All components used
in this paper, both basic and higher-level component coatbis, have been implemented in

Extreme Markup Languages 2006 1



Mario BlaZzevi¢ ® Streaming component combinators

OmniMark [OmniMark 2006], version 8. Some of the componemlementations have been
omitted to conserve space. The same design could be reglicabther general-purpose
programming languages. One likely constraint is that th@@émentation language should
support coroutines in some form [Wilmott 2003].

Related work

The importance of streaming transformations of markup bag been recognized. There has
been ongoing work on creating streaming implementatiossasfdardized markup-processing
and querying languages, XPath [Peng 2005][Olteanu 2008[,>and XQuery [Florescu 2004]
[Fegaras 2002] among them. However, the design of thesedaeg is such that no
implementation can guarantee streaming behaviour. Offeetsshave been focused on defining
streaming subsets of the aforementioned languages, aasv@blecially-designed languages that
fully support streaming processing, like OmniMark [Omnild2006], Sequential XPath [Desai
2001] and Streaming Transformations for XML [Becker 2003].

Streaming component frameworks seem to have been reinveeteral times. Most of these
frameworks, however, are designed to work on coarse-gidilter components. Some examples
are XPipe [XPipe 2002], XML Pipeline [XML Pipeline 2002], €aon [Apache 2006], and iFlow
[Lui 2000]. Possible exceptions are STnG [Krupnikov 20@3]well as THREADS [Morrison
1994] which can apply components to arbitrary parts of tamework input. However, none of
the listed frameworks seem to try to formally classify thenp@nents into abstract classes, nor
define any generic component combinators that would operatestances of component classes.

On the other hand, plenty of work has been done on combinaoreiwvorks in general,
especially in the functional programming language comityuiheparsercomponent
combinators [Hutton 1996] are closely related to this wérkice implementation of a parser
combinator library is Parsec [Leijen 2001]. The main défece between a parser combinator
framework and a streaming component combinator frameveoty as the one presented here, is
that parser frameworks are streaming only on their inpwd.<tth the output side, they produce a
well-defined and structured result from the input sourgeicslly a parse tree. This is possible
only because a parser deals with highly structured and i@net input. Once some input is
parsed and the result constructed, the input is no long&ssacy. In contrast, a streaming
component combinator framework has to deal with input thanily weakly structured; in many
cases the only meaningful result of processing any singigoment is just a rearrangement of
the component’s input.

There are also combinator frameworks for XML document psstey, HaXML [Wallace 1999]
for example. While many of the combinators defined by HaXMéerable ours, there are two
important differences: HaXML combinators operate exdelyi on filters andad hocHaskell
function types, and HaXML operates on a parsed documenatrée¢herefore is not streaming.
The latter constraint appears to be shared by all XML contbirfeameworks implemented in
Haskell today. The XPath implementation in Scheme, SXRatioysky 2003], provides
combinators that operate on nodeset-transforming fumgti@hich are also not designed for
streaming.

The most recent work [Shivers 2006] finally applies the carator approach to streaming
components by using continuation passing to transfer abrithe early results are promising, but
most attention is still devoted to simple linear pipeliné§ilter components.

Extreme Markup Languages 2006 2



Mario BlaZzevi¢ ® Streaming component combinators

Streaming component types

Filters

A filter is a streaming component with one data source and ateesink. The concept of
streaming filter components has been recognized for songe &nd is a part of programmers’
vocabulary in many areas. A filter component takes a datarstes its input, transforms it, and
produces another data stream as its output. The best-knammpte of filters is probably the
Unix piping model [Raymond 2003].

A filter component has a responsibility to consume its whojait. It is not allowed to simply
terminate in the middle of processing of its input. If oneefilin a pipeline terminates, the whole
pipeline dies with it.

In OmniMark, a filter component can be represented as anaabstata type with a single
operationapply-filter, illustrated below in figure 1:

in out

export record filter

export dynami c overl oaded function
apply-filter value filter filter
fromvalue string source filter-source
into value string sink filter-sink
as
not -reached nessage "The base function apply-filter nmust be overridden!"

Figure 1. "Abstract filter component"

A concrete filter implementation must extend the abstiiet type and override itapply-filter
method. Several concrete filter examples are given next.

Basic filters

* as-isis a simple filter that passes its input through unmodified.

; record decl aration
declare record identity-filter extends filter

Extreme Markup Languages 2006 3



Mario BlaZzevi¢ ® Streaming component combinators

; constructor definition
export filter function
as-is
as
return new identity-filter {}

; apply-filter method overriding
define overriding function
apply-filter value identity-filter filter
fromvalue string source filter-source
into value string sink filter-sink
as
put filter-sink filter-source

* Thereplace-byfilter is parametrized by a string parameter at creation.tifhés filter
replaces its whole input by the parameter.

; record decl aration
decl are record constant-filter extends filter
field string repl acenment

; constructor definition
export filter function

repl ace- by val ue string repl acenent
as

|l ocal constant-filter result

set result:replacenent to repl acenent
return result

; apply-filter method overriding
define overriding function
apply-filter value constant-filter filter
fromvalue string source filter-source
into value string sink filter-sink
as
put filter-sink filter:replacenent
put #suppress filter-source

« suppressfilter suppresses all input it receives. It is equivalenefglace-by "'

» error filter reports an error if any input reaches it.

* prependfilter passes its input unmodified, except for prepending/argconstant string
parameter before it.

» appendfilter passes its input unmodified, except for appending argeonstant string
parameter to its end.

e include-file treats its whole input as a URL or a file path and outputs théecaof the
file.

Extreme Markup Languages 2006 4



Mario BlaZzevi¢ ® Streaming component combinators

Markup filters

The filters listed in the previous section are generic, inseese that they can be applied to any
form of character input stream. But if we restrict our ati@mto inputs in a particular format, we
can provide many more interesting filters. The more sped¢idriput is, the more sophisticated
the possible processing components can get. For examplemapply the following filters to
any input in XML format:

* xml-escapeescapes the XML markup so it can be embedded as an XML element
content. It replaces ">" characters by "&gt;" etc. Its irsersxml-unescapewhich
performs the opposite operation, by expanding all escapéd eharacter entities.

* xml-rename-elementrenames all top-level occurrences of any XML element innfsit
to the given name.

« xml-rename-attribute renames all top-level elements’ attributes with the givama to
the other given attribute name.

« xml-add-attribute adds an attribute with a given name and value to all top-level
elements in its input.

* xml-remove-attribute removes all top-level element attributes in its input thateh the
given attribute name.

The inputs and outputs of XML-specific components are not-teemed XML documents, but
rather streams of well-formed mixed content.

Buffering filters

There is a large class of filters that have to buffer their whioput before they can produce any
result. These are netreamingcomponents in any sense, but since they expose their funadityp
through a streaming interface they can still be used in astieg component framework. The
trick is to restrict their usage to the parts of the streanciinnust be processed in this way.
Unfortunately, the burden of deciding which parts thoseson the user.

e xml-sort-by-attribute sorts the top-level elements in its input by the value of the
attribute with the given name.

* xml-sort-by-content sorts the top-level elements in its input by the value ofrtbentent.

» character-countcounts all characters in its input and outputs the numbeeamnaal
form.

Splitters

A splitter is a streaming component with one data sourcew&ndinks. A pure splitter
component is not supposed to modify its input in any waygadt it streams portions of its input
stream to either of its two outputs. Every bit from the inpguéam has to be present in one or the
other of the output streams. Secondly, the outputs have podperly interleaved. Another way

of stating the invariants is to say that if the two sinks of anye splitter are connected together,
the component acts as an identity transform.

Extreme Markup Languages 2006 5



Mario BlaZzevi¢ ® Streaming component combinators

The concept of splitters, together with the operationsc¢hatbe applied to them, is the only new
technical contribution this paper has to offer. The strempgiomponent frameworks have been
researched and built before, but the emphasis has mostiydrefdters. That is not to say that no
framework contained splitter components before. The pres/work on streaming pipeline
frameworks has mostly seen splitters as laggehoccomponents that must be provided by the
user.

In OmniMark, a splitter component can be represented asstreabdata type with a single
operationsplit that takes one data source and two sinks as arguments:

true

false

export record splitter

export dynam c string sink function
split (value splitter sp,
val ue string sink true,
val ue string sink false)
as
not -reached nessage "The base nmethod split nust be overridden!”

Figure 2. Abstract splitter component

The concrete splitter instances must extend the bplstter type and override the methaglit. In
the examples that follow, the OmniMark code will be elidedidcevity.

Basic splitters
« all-true andall-false splitters simply pass their entire input to ttnee andfalsesink,

respectively.

e Thewhitespacesplitter passes all whitespace totitse sink, and the rest of the input to
its falsesink.

e Thelinessplitter passes the contents of every line in its input tathesink, and all
line-end characters to tHalsesink.

Extreme Markup Languages 2006 6



Mario BlaZzevi¢ ® Streaming component combinators

e Thesubstring splitter is parametrized by a constant string value. Whengencounters
the given string in its input, it passes it to ttnae sink. All the rest of the input goes to the
falsesink.

; record declaration
decl are record substring-splitter extends splitter
field string substring

; constructor definition
export splitter function

substring value string substring
as

| ocal substring-splitter result

set result:substring to substring
return result

; split method overriding
define overriding string sink function
split (value substring-splitter self,
val ue string sink true,
val ue string sink fal se)
as
repeat scan #current-input
mat ch ~sel f:substring
put true self:substring
mat ch any => one
put fal se one
again

« prefix andsuffix are similar to thesubstringsplitter, except they look for the given string
only at the beginning and at the end of their input, respeltiv

Markup splitters

The observation on the generic and purpose-specific filteoshelds true for splitters: as we
restrict the inputs to be more specific, the splitters we ggoyato them become more
sophisticated.

* xml-elementscans the input for well-formed XML elements. Elements agspd to the
true sink together with their content, and all the intervenintadgoes to théalsesink. If
there is no intervening data between two consecutive eltyims splitter sends an
empty XML comment to théalsesink as intervening data. Therefore, this is not a pure
splitter: it generates some data that was not present inptg.i This behaviour makes the
splitter usable for chunking consecutive elements, ashgibeen later. When used with
the other element-processing components, as is usualbae the extra empty
comments are irrelevant.

« xml-element-contentbehaves similarly to theml-elemensplitter, except it strips the
start and end tags off the top-level elements, and senddlugitycontent to thérue sink.
The top-level element tags, together with any interveneig dontent, go to thialsesink.

Extreme Markup Languages 2006 7



Mario BlaZzevi¢ ® Streaming component combinators

« xml-element-namedis parametrized by an element name, and optionally with a
namespace. It behaves like tkral-elemensplitter, but it sends to itsue sink only those
top-level elements whose name matches the given argumera. na

« xml-attribute-named is parametrized by an attribute name, and optionally with a
namespace. If it finds an element attribute matching thengieene among the top-level
elements in its input, it sends it to tireie sink. Everything else goes to tfesesink.

« xml-attribute-value expects a list of attributes as its input. It sends attrilvataes, with
the quote delimiters stripped, to iisie sink, and the rest of the input to ifglsesink.

Streaming component combinators

A library of streaming components like those listed in thevowus section can help perform
various basic tasks, but we call th@mmponentbecause the goal is to use them together as
building blocks for assembling more sophisticated strgaotessing tools.

One way to combine streaming components is to wire theilsgogether; for examples see
[Morrison 1994] and [XML Pipeline 2002]. This method dirlgotorresponds to the way
pipelines are usually represented graphically, by drawiregs between components’ ports. While
a specification written in this style can express any possibhfiguration of components, the
technique does not scale well: the number of possible caiomsagyrows as the square of the
number of all ports of all components present in the network.

The other common approach is to use combinators. Compoasrtiinators operate on whole
components instead of their ports, much in the same way timabmatory logic [Curry 1958]
operates on whole functions instead of their arguments esults. An example of this
specification method in streaming frameworks is [KrupniR@@3], but the best known
streaming combinator is the Unix pipe operator.

While the wiring approach is applicable to any number of comgmts of any kind, a combinator
can be applied only to specific kinds of components. Thistcaimd leads to two design
imperatives:

* All basic components should be classified by what combnsatan be applied to them,
and the number of different component classes should bead&epminimum. The more
different component classes there are, the more diffe@nbmators are needed to
operate on them.

e The result of a combinator application is another companEms combined component
should always fall into one of the component classes of dn@aéwork. That way we can
keep applying the same combinators to the intermediatétsepuoducing more and more
complex components.

The framework presented here classifies all componentswatclasses: filters and splitters.
Every basic component is either a splitter or a filter, they @mfjuments of every combinator are
splitters and filters, and the result of each combinatorieaibn is either a filter or a splitter
component.

Extreme Markup Languages 2006 8



Mario BlaZzevi¢ ® Streaming component combinators

Filter combinators

>> The most obvious and well-known combinator of streaming ponents is the pipe
operator. It takes two filters and combines them togetherargingle filter component.
The resulting component acts as a composition of the twanaegtifilters: it passes the
input to one filter, the output of that filter is passed to tHeeofilter, and its output
becomes the output of the combined component.

join combinator also combines two filters into a single filter. Koer, this combinator
arranges the two filters in parallel. The input of the resglfilter is replicated to both
component filters in parallel, and the output of the resglfitter is a concatenation of the
two component filters’ outputs.

To do its job, the join combinator uses two non-standard amepts. Théee component,
known from the Unix environment, replicates its input insmtparallel streams. This
component is neither a filter nor a splitter, so no genericgament combinator can use it.
Another non-standard Unix-style componentas taking two (or more) inputs and
concatenating them in order. Again, this component canaaisied by generic component
combinators. However, in place of these two components weuoavide thgoin
combinator that combines two filters into another filter comgnt. The combined
component internally useseto replicate its input to both of the filters it contains and
thencatto concatenate the filters’ outputs. The result behaves asdamary filter and can
be used by other combinators. Notice, however, that thdtrdger of join is not
completely streaming, as it has to buffer the output of tleesd component filter until
the end of the input.

Pseudo-logical splitter combinators

A pure splitter component can be thought of as a representatia logic predicate. The portion
of the input that the splitter sends to one of its two sinksakeh to satisfy the predicate, and the
input that goes to its other sink does not. Having this pectarmind, the following splitter
combinators become obvious.

The! (not) operator simply reverses the outputs of the argun@ittes. In other words,
data that the argument splitter sends tdri® sink goes to théalsesink, and vice versa.

The>& operator sends theue sink output of its left operand to the input of its right
operand for further splitting. Both operandalsesinks are connected to ti@sesink of
the combined splitter, but any piece of input to get intottine sink of the combined
component data must pass both splitters. Figure 3 illiestriis.

Extreme Markup Languages 2006 9



Mario BlaZzevi¢ ® Streaming component combinators

/ true
/
o
in 1/
|in
\
\
\
AN false

; record declaration

declare record and-splitter extends splitter
field splitter |eft
field splitter right

; constructor definition
export overl oaded splitter infix-function
value splitter left
>&
value splitter right
as
| ocal and-splitter result

set result:left to left
set result:right to right
return result

; split nethod overriding
define overriding string sink function
split (value and-splitter s,
val ue string sink true,
val ue string sink false)
as
using output as split (s:left, split (s:right, true, false), false)
out put #current-input

Figure 3. >& splitter combinator

* The>| splitter combinator is a mirror image of >& combinator, dgstrated by figure 4.
Its input can get to itfalsesink only by going through both argument splittefiad'se
sinks.

Extreme Markup Languages 2006 10



Mario BlaZzevi¢ ® Streaming component combinators

true

false

. skipping the record and constructor declaration
; split method overriding
define overriding string sink function
split (value or-splitter s,
val ue string sink true
val ue string sink false)
as
using output as split (s:left, true, split (s:right, true, false))
out put #current-input

Figure 4. >| splitter combinator

Note that the >& and >| operators are not exact equivalertsoforresponding Booleandor
operators. In particular, they are commutative only wheirttiwo argument splitters agree on
what forms a unit of input,e., when the input stream is a uniform sequence of records. Most
markup splitters do not satisfy this property. For examible expressiomml-element-named "A"
>& xml-element-content >& xml-element-named "B"an equivalent of the XPath expression
A/B, which is obviously not commutative.

Flow-control combinators

Since approximating a splitter as a logic predicate.(a boolean expression) turned out to be
productive, we can try digging deeper into our intuition iseful metaphors. For example, we
can see a filter component as an imperative statement. Arfilbelifies the stream that flows
through it, much like an imperative statement that modifiesstate surrounding it. The piping
operator>> would then be an equivalent of a statement sequencing @periving both
imperative statements and Boolean expressions, the hdtungto look for next would be an
equivalent of the flow-control statements.

Extreme Markup Languages 2006 11



Mario BlaZzevi¢ ® Streaming component combinators

e Theif combinator takes a splitter and two filters and combines timéora single filter
component, as shown in figure 5. The resulting filter applresargument filter to one
portion of the input and the other filter to the other portidmput, depending on where
the splitter routes the data.

/

5

false in

Cm————————
\

; apply-filter method overriding
define overriding function
apply-filter value if-filter filter
fromvalue string source filter-source
into value string sink filter-sink
as
using output as split (filter:splitter,
filter:left > filter-sink,
filter:right >> filter-sink)
output filter-source

Figure 5. if combinator

The combinatorsvhere andunlessare simpler versions of thé combinator, having one of the
two filters beas-is Theselectcombinator uses thas-isandsuppresdilters as thdrue andfalse
sinks, respectively. In effect, thszlectcombinator converts a splitter into a filter which retains
only thetrue portion of the input. The three combinators can be more fiyndafined as follows:

e splitterwherefilter — if splitter thenfilter else as-is

» splitterunlessfilter — if splitterthen as-is elsélter

* selectsplitter — suppress unlesplitter

A combinator language is point-free by definition, so we @dmuse component names or labels
to achieve looping and recursion. If we want our componetworks to be able to form loops,
we need more flow-control combinators.

Extreme Markup Languages 2006 12



Mario BlaZzevi¢ ® Streaming component combinators

e The recursive combinatavhile, illustrated in figure 6, feeds theue sink of the
argument splitter back to itself, filtered by the argumetefilThefalsesink of the splitter
is passed on unmodified. The combinaitatil is the mirror image oWhile.

; apply-filter method overriding
define overriding function
apply-filter value while-filter self
fromvalue string source filter-source
into value string sink filter-sink

as
do scan filter-source
mat ch | ookahead any
using output as split (self:splitter,
self:filter > self >> filter-sink,
filter-sink)
out put #current-input
done

Figure 6.  while combinator

e The recursive combinatorestedcombines two splitters into a mutually recursive loop
acting as a single splitter. Thiue sink of one of the argument splitters afadisesink of
the other become theue andfalsesinks of the loop. The other two sinks are bound to the
other splitter’s source. This particular combinator doaeshave a corresponding
flow-control equivalent in the world of programming langeagThe reason for this is that
the use ohestedonly makes sense on hierarchically structured streams Have it
some input containing a flat sequence of records, and asguuth component splitters
are deterministic and stateless, a record would eitheroomt &t all or it would loop
forever.

Extreme Markup Languages 2006 13



Mario BlaZzevi¢ ® Streaming component combinators

true

false

-
I
I
I
|
I
I
I
I
I
I
I
|
I
I

L

; split nethod overriding
define overriding string sink function
split (value nested-splitter self,
val ue string sink true
val ue string sink fal se)
as
do when #current-input natches (| ookahead any)
using output as split (self:upper-splitter,
true,
split (self:lower-splitter,
split (self, true, false),
fal se))
repeat scan #current-input
mat ch any => one
out put one
agai n
done

Figure 7. nested combinator

Active combinators

Each of the combinators defined so far builds a streamingar&teut of its argument
components, and then lets the network do its job. The cortdviitaelf plays no role after the
initial configuration. This property guarantees that theabmator is completely generic: the type
of input that can be processed by the network is constraingday its components, not by the
combinators applied to them.

The combinators defined next are different; they are stillegie enough to be used on any kind
of input, but they also actively process the input streaneyTdchieve these seemingly
contradictory goals by using their splitter argument teed®ine the structure of the input. Every

Extreme Markup Languages 2006 14



Mario BlaZzevi¢ ® Streaming component combinators

contiguous portion of the input that gets passed to one ootther sink of the splitter is treated as
one section in the logical structure of the input stream. ¥\ idone with the section depends on
the combinator, but the sections, and therefore the logtcatture of the stream, are determined
by the argument splitter alone.

The combinatofirst takes a splitter as an argument and returns another splitter
result behaves the same as the argument splitter up to andimg the first portion of the
input which goes into the argumentisie sink. All input following the firsttrue portion
goes into thdalsesink.

The result of the combinatdast is a splitter which directs all input to ifalsesink, up to
the last portion of the input which goes to its argumetritie sink. That portion of the
input is the only one that goes to the resulting componéniéssink.

The splitter returned by the combinatast has to buffer the previous two portions of its
input, because it cannot know iftaue portion of the input is the last one until it sees the
end of the input or another portion succeeding the previoes o

Theforeach combinator is similar to the combinatidrin that it combines a splitter and
two filters into another filter. However, in this case the fdtare re-instantiated for each
consecutive portion of the input as the splitter chunks itiegch contiguous portion of
the input that the splitter sends to one of its two sinks gkesdid through the appropriate
argument filter as that filter’s whole input. As soon as theigoious portion is finished,
the filter gets terminated.

Thehaving combinator combines two pure splitters into a pure spliigain, one
splitter is used to chunk the input into contiguous portidtssfalsesink is routed directly
to thefalsesink of the combined splitter. The second splitter is ins&@d and run on
each portion of the input that goes to first splitterige sink. If the second splitter sends
any output at all to itsrue sink, the whole input portion is passed on to thee sink of
the combined splitter, otherwise it goes tofasesink.

Thehaving-only combinator is analogous to th@vingcombinator, but it succeeds and
passes each chunk of the input totrige sink only if the second splitter sends no part of it
to itsfalsesink.

Note that the combinatofgvingandhaving-onlymust buffer each complete chunk of input until
the second splitter tests it.

One reason buffering matters is that flow-control combirgtequire their argument components
to agree on which parts of the stream get buffered and at wiatit they get flushed. If one of
the subcomponents buffers a part of its input and the othes dot, the output of the combined
component may be improperly interleaved. The followingfikxpression is one such example:

if xm-elenent-content then as-is else select last all-true

Both branches of the expression produce identical outpuheswhole expression may seem
equivalent taas-is but because all the element tags get bufferethbyall-truethey will be
output after the element content. We can synchronize thétanaches by using tHereach
combinator instead af .

Extreme Markup Languages 2006 15



Mario BlaZzevi¢ ® Streaming component combinators

Examples
Let us try to define some higher-level components as a tebedfamework’s expressivity.

* Thematching combinator takes a splittselectorand a string constanalueand returns
a splitter that compares each portion of the input passetidogdlector against the value:

sel ector matching value — sel ector having-only prefix val ue

or, in OmniMark syntax:

export splitter infix-function
val ue splitter sel ector
mat chi ng
val ue string val ue
as
return sel ector having-only prefix val ue

e Theattribute-is splitter, parametrized by two stringsameandvalug passes all
top-level elements that have an attribute with the same reardevalue.

name attribute-is value
— xm -el ement having ((xm-attribute-naned nane >& xm -attri bute-val ue)
mat chi ng val ue)

* Thexml-element-countfilter takes XML input and outputs the number of all top-level
elements.

xm - el ement - count
— (foreach xm -el enent then replace-by "." el se suppress) >> character-count

* Thedescendant-element-namedplitter component finds all nested elements with the
given name:

descendant - el enent - named name
— nested (xnl -el ement -nanmed nane) in xm -el ement - cont ent

* Thetext-content splitter extracts the text content of all top-level elensantits input:

text-content — xnl -el enent-content >& ! xm -el enent

e The next example illustrates the use of jbiem combinator. For anfile-pathelement in
the input stream, whose content is a slash-delimited fille, phé component adds a
corresponding base file name enclosetil@&anameelement tags.

foreach descendant-el enment-nanmed "fil e-path"

then as-is join ((select xnl-elenment-content)
>> (select last (!substring "/"))
>> (prepend "<fil e-nane>")
>> (append "</fil e-nane>"))

Extreme Markup Languages 2006 16



Mario BlaZzevi¢ ® Streaming component combinators

e Asthe final example, consider the following XQuery expr@ss

<ref erences>

{
for $r in //book[.//keyword[text() = "filter"]]

return <reference>{$r/title/text()}</reference>

}

</references>

Assuming there are no book elements nested within each, thiequery can be
rewritten using the streaming combinators in the followi@sghion:

(

foreach (descendant-el ement - naned " book"
havi ng (descendant - el enent - naned " keyword"
>& text-content matching "filter"))
then (select (descendant-el ement-named "title") >& xnml -el enent-content)
>> (prepend "<reference>") >> (append "</reference>")
el se suppress

)

>> (prepend "<references>") >> (append "</references>")

Conclusion and future work

We have demonstrated that the concept of splitter and fitterponents, coupled with the power
of generic component combinators, is expressive enougtilkd feew filters and new splitters
from a small base of predefined basic components and compoom@binators.

In the future, we hope to use the presented framework inwedl applications. More practice is
needed to grow the library of basic components and combisato

We can see that all components communicate with each ottwergh simple data streams, with
no out-of-bounds control signals whatsoever. While thegudee of the framework simplifies
manipulation and reasoning about the component netwadrissaiconstraint in some cases. In
particular, one must take care when using buffering compisnd they disagree on the structure
of the input stream the output of the network can be imprgpatérleaved. A solution that could
discover a problem of this kind by a static analysis of the gonent network would be greatly
preferable to synchronization signals.

Another area of research would be concerned with varionsfoamations of the component
networks. One possibility is automatic conversion of XRaid XQuery expressions into a
streaming component representation. At the other end laupucomponent pipeline, or at least
parts of it, could be compiled into more efficient code in Olark or another host language.
And in between, the component network could be transfornitedreat the high level, using a
graph rewriting system, or at the lower level, by fusing nplét components into a single one.

Though the current implementation is in OmniMark, the ogttires the framework requires
from the implementation language are abstract data types@me form of coroutine support.
One interesting possibility would be to implement the sarasework in Haskell, since the
existing implementations of parser combinator librarreslaskell have proven quite successful.

Extreme Markup Languages 2006 17



Mario BlaZzevi¢ ® Streaming component combinators

Acknowledgements

| want to thank Jacques Légaré for his comments, Helen StisPéwe Gollner and Norbert
Winklareth for finding the time to read the paper, and theaé#te team at Stilo for providing
the initial motivation for the work.

Bibliography
[Morrison 1994]John Paul Morrisonf-low Based Programming/an Nostrand Reinhold, 1994.

[Wilmott 2003] Sam Wilmott,What programming language designers should do to help nparku
processingExtreme Markup Languages, 2003

[Raymond 2003Eric Steven Raymond;he Art of Unix Programming
http://www.fags.org/docs/artu/index.html, 2003.

[Hartmann 1992]John P. Hartmann, IBM Denmark&MS Pipelines Explained
http://vm.marist.edu/~pipeline/pipjarg.pdf, 1992 ismd 1997.

[OmniMark 2006] OmniMark language documentation
http://developers.omnimark.com/documentation/inliemx.

[Peng 2005] Feng Peng, Sudarshan S. ChawakfeQ: A streaming XPath engin&CM
Transactions on Database Systems (TOB8R, 2005.

[Olteanu 2004PDan Olteanu, Tim Furche, Francois BAn efficient single-pass query evaluator
for XML data streamsProceedings of the 2004 ACM symposium on Applied
Computing27 - 631 2004.

[Florescu 2004Paniela Florescu, Chris Hillery, Donald Kossmann, Pauldsjd¢-abio Riccardi,
Till Westmann, J. Carey, Arvind Sundararajdime BEA streaming XQuery
processoy The VLDB Journall3:3, 2004.

[Fegaras 2002 eonidas Fegaras, David Levine, Sujoe Bose, Vamsi Chalu}adl. query
processing: Query processing of streamed XML dRtaceedings of the eleventh
international conference on Information and knowledge agament, 2002.

[Desai 2001] Arpan Desailntroduction to Sequential XPathXML 2001.

[Becker 2003]0liver BeckerExtended SAX Filter Processing with STX
http://stx.sourceforge.net/, Extreme Markup Languagee3

[XPipe 2002] XPipe presentation at XML SIG NY
http://xpipe.sourceforge.net/BinaryStuff/xpipenyt,[4902.

[XML Pipeline 2002] XML Pipeline Definition Language Version 1.0
http://www.w3.0rg/TR/2002/NOTE-xml-pipeline-2002022

[Apache 2006http://cocoon.apache.org/2.1/overview.html

[Lui 2000]  Andrew Kwok-Fai Lui, Mark W. Grigg, Michael J. Owen, T. AndvéAu, iFlow
(poster session): a data streaming application framewa@gda on a uniform
abstraction Addendum to the 2000 proceedings of the conference on
Object-oriented programming, systems, languages, ancappns (Addendum),
2000.

Extreme Markup Languages 2006 18



Mario BlaZzevi¢ ® Streaming component combinators

[Krupnikov 2003] K. Ari Krupnikov, STnG - a Streaming Transformations and Glue framework
Extreme Markup 2003.

[Hutton 1996]Graham Hutton, Erik MeijefMonadic Parser Combinator3echnical report
NOTTCS-TR-96-4. Department of Computer Science, Unitedi Nottingham,
1996.

[Leijen 2001] Daan LeijenParsec, a fast combinator parser
http://www.cs.uu.nl/people/daan/parsec.html, Uniigisf Utrecht, Dept. of
Computer Science, 2001

[Wallace 1999Malcolm Wallace, Colin Runcimaraskell and XML: Generic Combinators or
Type-Based Translationthternational Conference on Functional Programming,
1999.

[Lisovsky 2003Kirill Lisovsky, Dmitry Lizorkin, XML Path Language (XPath) and its functional
implementation SXPatRRussian Digital Libraries Journal, Year 2003, Issue 4

[Shivers 2006Dlin Shivers, Matthew MightContinuations and Transducer Compositié.DI
2006.

[Curry 1958] HB Curry, R Feys, W CraigCombinatory logi¢cNorth-Holland, 1958.
Biography

Mario Blazevic

Senior Software Developer

Stilo International

1900 City Park Drive

Suite 504

Ottawa Ontario K1J 1A3 Canada

The author has a master’s degree in computer science frowetdity of Novi Sad, Yugoslavia.
Since moving to Canada in 2001, he’s been working for OmnikMa&chnologies, later acquired
by Stilo International plc., mostly in the area of markupgqessing and on development of the
OmniMark programming language.

Extreme Markup Languages 2006 19



